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Foreword

November 12, 2024

‘When I wrote this, about 34 years ago now, a new concept called connectionism was
spreading quickly in the academic universe. Simply put, this is the idea that artificial
intelligence could be achieved not by writing programs, but rather by building a brain-like
model with a tremendous number of nodes and connections. We knew this was what the
brain looked like when we looked at it through a microscope, and we knew electrical
pulses sent information down a nerve between the brain’s cells. Ideas based on how this
architecture resulted in a thinking human came from the cognitive biologists who built
models and called them artificial neural networks. Tiny models of a few neurons and
nerves were being built as early as the 1940s that showed intriguing behaviors.

In 1969, a couple of influential computer scientists wrote a book saying this could not
possibly work. All funding through government agencies such as NASA halted, which led
to the computer industry also being uninterested. The connectionists got neither national
attention nor big grants; instead, they were ignored or ridiculed by the mainstream. This
began one of the largest ice ages in artificial intelligence research.

When I wrote this in 1990, I was an enthusiastic PhD candidate who had studied the
mainstream artificial intelligence efforts in great depth. I was much more interested in the
work of neuroscientists on animal brains and why these models didn’t agree. A few rebels
insisted that, to build a machine that could think, connectionism was the only way
forward.

I worked at NASA at the time and my project managers were notably unimpressed
with these new ideas. They preferred that I build an incrementally faster computer with
incrementally smarter programs, safe and sure to succeed. Proposing to build a new
artificial brain to power a robot put you in a fringe category of alternative researchers
considered irresponsible and lacking in gravitas. I was this kind of researcher.

Fast forward to 2024, and connectionism is ruling the largest tech companies and is
well on its way to conquering the world, literally as well as figuratively. It turns out that
copying the brain is a good approach. Connectionism needed a refocus on training rather
than explicit design of behavior, structuring layers and pathways into an engineered
learning machine, and most of all, huge arrays of much faster and cheaper computers. It
also required lots of people and encouragement (funds) to spend their lives working all
this out.

This paper proposes dynamical systems (math) descriptions of knowledge and
intelligent behavior using attractors. It does not say much about how you might actually
build something like this. We now know that such a network should be trained rather
than built, and that you need a vast amount of compute, far more than was available in the
biggest supercomputers at the time. Yet it still (I hope) captures some of the excitement in
the artificial intelligence world as the big freeze ended.
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Abstract

Much work has been done recently on nonlinear dynamical systems of differential
equations. The behavior of these systems often closely resembles that of real-world
phenomena. Although nonlinear differential equations generally cannot be solved
analytically, a complex system’s dynamics can be described succinctly using attractors in a
space of many (potentially infinitely many) dimensions. In addition, the dynamics of the
attractor itself (i.e., how the system’s behavior changes as a function of its environment),
called superdynamics, may be described as a trajectory through the superspace of all
possible attractors. This paper proposes a connectionist description of knowledge and
theory of computation based on attractors and superdynamics.

Introduction

Since the early days of artificial intelligence, there have been two camps of thought on
how to design an intelligent system. The mainstream of Al research describes knowledge
on a conceptual level, essentially modeling high level processes according to logic. In this
camp we find expert systems, scripts and schemas, and rule based systems. Connectionists,
on the other hand, use complex networks of simple processors to try to implement
intelligent systems at a very low level, modeled after the brains of living things. These
researchers have developed backpropagation networks, associative memories, and other
constructs which have certain properties in common with intelligent systems.

Both approaches have had limited success. The mainstream approach suffers from a
lack of subtlety and elegance — many fundamental properties of intelligent systems must
be handled by add-on mechanisms, such as learning, or dealing with novel input in an
open system. For instance, refining the behavior of an expert system to handle special
circumstances usually means adding special case rules to the rule base.
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The connectionist approach has its own set of completely different problems. Many
properties not displayed by high-level AI systems are emergent properties of connectionist
systems, such as generalization, categorization, and associative recall. The overwhelming
complexity of the connection topology of neural networks and the difficulty of examining
their internal distributed knowledge representations make engineering these networks a
hit-or-miss proposition.

What is needed is a description of knowledge and computation which covers both
camps, is scalable from low level networks to high level complex systems, and which
explains the shortcomings of either approach. With scalability comes the ability to bridge
the rift between the two approaches, opening the door to cross-pollination of ideas and
techniques. This paper proposes such a description based on a relatively new branch of
mathematics which has already shown promise in modeling physical processes in nature.

A brief introduction to attractors and nonlinear dynamics is presented, followed by a
description of how these concepts can be related to information theory. Next, a
connectionist implementation of a semantic network is described. A translation of this
implementation into attractor terms is then presented. The paper concludes with a
speculative discussion on the application of the attractor paradigm to several real-world
problems.

Attractors describe the behavior of complex systems

What is an attractor?

e Each possible pattern of activations distributed across a network collapses to a
single point in state space

Imagine a complex network of processing nodes or neurons. Each node has a certain
activation, which may be binary or real-valued, depending on the model being used. If we
take a snapshot of all activations across the entire network, we can describe the state of
the entire network as a single point in n-dimensional state space, where n is the number
of nodes in the network. Thus the distributed pattern of activations at a single instant in
time collapses to a single point in state space. The state space contains all possible states of
the network. If the values which a node activation may take are constrained, the state space
is similarly constrained.

e Patterns of activation generally change over time

Now, rather than taking a single snapshot, we take a sequence of snapshots to form a
movie of the pattern of activations as the pattern changes over time. In state space, we now
get a trajectory in state space which describes the exact behavior of the system over time.

As an example of a dynamical system, imagine a frictionless pendulum in motion.
Plotting its behavior in a two-dimensional state space where kinetic energy (speed) and
potential energy (height) are the two dimensions results in a circular state trajectory. The
current state of the system is a point which revolves forever around this circle.



e Trajectories in state space are “attracted” to certain points which correspond to
temporally stable patterns

A nonlinear dynamical system, in general, has certain states which minimize the
“energy” (or identically, maximize the entropy) of the entire system. The system has a
tendency to fall into these minimum energy states. Whatever the current state of the
system, its state will change over time until it reaches one of these minimum energy states.
Once it enters one of these states, it stays there until the system is externally influenced.
These stable states of the system are called fixed point attractors.

An attractor describes all possible behaviors or state trajectories of a dynamical system,
given an initial system state. In state space, the attractor is an n-dimensional point, and
trajectories describing the evolution of system state are “attracted” to that point. There are
an infinite number of possible trajectories. When the system state settles toward an
attractor as a function of time (as opposed to other external influences), it is called a
temporal attractor. The attractors described in this paper are temporal attractors.

If we re-examine the pendulum described above, we may form a fixed point attractor
by adding friction to the system. Friction causes the pendulum to eventually end up in a
zero energy state, corresponding to a point at the origin of the state space. This point is the
attractor describing the system. No matter what the starting state, the current state will
spiral into the zero energy point as the energy of the system is dissipated by friction.

There are three fundamental types of attractors: Fixed point, periodic, and chaotic.
‘When the trajectory settles to a repeating cycle of patterns, the attractor is called a periodic
or limit cycle attractor. This type of attractor is characterized by a trajectory which exactly
repeats itself (i.e., the system periodically returns to exactly the same state it was in
previously).

A chaotic attractor has an underlying pattern, but it appears as though the system
behaves randomly. For example, weather has been described by a chaotic attractor (the
Lorenz attractor). It behaves somewhat repetitively in cycles of days and years, but its
exact behavior cannot be predicted. One can at best estimate the probable range of weather
for a particular season and time of day. In state space terms, we can estimate a bounding
hypervolume but we cannot determine future states (i.e., the state trajectory) exactly.

The more complex periodic and chaotic attractors can have an extremely complicated
structure when visualized in three-dimensional space. As state space dimensionality
increases, so does the number of possible attractor shapes. Also, an attractor may appear
periodic until magnified, when chaotic characteristics emerge.

e An attractor describes all possible trajectories in the state space of a given
system whose initial state is within its “basin of attraction”

One can think of the state space as having an “energy landscape” where attractors are
the low points, and the strength of the attractor is determined by the gradient of the
landscape. This energy landscape completely describes the system’s dynamics. If the
system can be described with a single attractor, the entire state space is within the



attractor’s basin of attraction. However, a system may have more than one attractor and
therefore more than one basin of attraction. In the same way that watersheds determine
where a raindrop will end up, a basin of attraction indicates that any initial condition
within the basin’s boundaries means that the system state will eventually end up at the
associated attractor.

e Attractors change as a function of the control parameters of the system

So far, we have discussed attractors as static entities, unchanging over time, even
though these static attractors describe the dynamic behavior of the system. However, the
attractors themselves may change for a number of reasons. The factors which cause an
attractor to change (thus changing the dynamic behavior of the system) are called control
parameters of the system. Control parameters are essentially anything that can change the
attractor that describes the system. Control parameters of a system can include external
environmental inputs (attractors change because of new input to the system), time decay
dynamics (attractors change over time), global parameters, or anything else which may
affect overall dynamical behavior. For example, one control parameter for the weather
attractor is insolation (amount of incoming solar radiation), which is an external input.
Another control parameter for the weather system might be the level of production of
manmade air pollution.

The description of the way attractors change as a function of control parameters is
called attractor Superdynamics. A discrete change in an attractor (implying a change of
behavior of the system) is called an attractor transition. The notion of attractor transitions
implies a discrete model in which a stable attractor transitions through intermediate
unstable attractors into another stable attractor.

e Superdynamical space is a yet higher level description of dynamical systems

Consider a space in which each point describes the behavior of a dynamical system —
each point then represents an attractor. The dimensions of this space are control
parameters. We are collapsing the entire state space dynamical description into a single
point, just like we collapsed the pattern of activations across the network into a single
point in state space. This (potentially) infinite dimensional space of all possible attractors
where each dimension describes a control parameter is called superdynamical space.

Control parameters are not necessarily independent. A control parameter may have a
positive correlation with another, which geometrically means that the two corresponding
dimensions are no longer orthogonal. A full correlation indicates that the two dimensions
have essentially rotated so that they are collinear.

A superdynamical scheme is a “trajectory” in superdynamical space which describes the
way an attractor changes in a system as a function of control parameters (Abraham/Shaw).
A superdynamical scheme describes a continuously changing attractor, as opposed to a
sequence of discrete attractor transitions.



What is the rationale for using attractors to describe computation?

e Systems of nonlinear differential equations describe the hidden regularities
inherent in many natural phenomena

Until the advent of computers, systems of nonlinear differential equations have been
intractable problems, since they generally cannot be solved analytically. The computer
allows the behavior of these systems to be examined numerically. This research has
revealed that solutions of even simple systems can have intricate structure (e.g., the
Mandelbrot set). These systems can also generate lifelike physical structures, such as fern
leaves, clouds, etc., by modeling actual physical processes in nature, which tend to be
nonlinear. These systems seem to contain essential regularities of nature based on physical
laws.

e A basic assumption in this paper is that certain aspects of information about the
world have a similar structure to the world itself

‘Why has intelligence evolved? According to Darwin, survival is the prime motive
behind any successful evolutionary trend. Intelligence enhances survival by enabling the
organism to predict its environment — where food can be found, how to avoid becoming
food for another. To predict its environment, an organism must have an internal model.
This internal model is used to recognize and recall regularities in the organism’s
environment. This paper discusses the possibility of using nonlinear dynamical systems as
an internal model.

e Acquisition of knowledge as the constrainment of possibilities

The process of acquiring knowledge can be thought of as a progressive containment of
possibilities. One way of constraining possibilities is by extracting properties which are
found to be important in defining a concept, and giving these properties values. A pair of
concepts originally indistinct from each other would thus be separated on the basis of some
observed property. For example, before one learns about the concepts blueberry and
strawberry, their colors are unknown. Upon learning that strawberries are red and
blueberries are not, the property “redness” may be used to indicate that if redness is
absent, you’re definitely not looking at a strawberry, but you still might be looking at a
blueberry. The fact that strawberries are red has enabled a partial classification or
partitioning of the world into red-things and non-red-things, with strawberries in the red-
things partition and blueberries in the larger non-red-things partition. The concept
“strawberry” has been constrained to exist in the red-things partition only. Thus the range
of possibilities has been limited in the “redness” dimension. One may think of this as a
physical constrainment along a single dimension in an infinite dimensional concept space.

The game “Twenty Questions” consists of a process of constraining a domain of all
possible answers down to a very specific concept by successive partitioning of possibilities.
In this game, one may think of an infinite dimensional hyperspace of possible answers.
When the questioner chooses a question, he or she is essentially partitioning this



hyperspace along a single (binary) dimension. If a question is “Is the object red?”, the
binary yes-no answer limits the space of possibilities. Skillfully chosen questions can very
quickly reduce a universe of possibilities to a single one; this skill is the mark of a good
player.

This approach works naturally with fuzzy answers as well. An object one inch in
diameter may or may not be a strawberry. If it is four inches in diameter, it is very unlikely
(but not impossible) to be a strawberry. While the concept “strawberry-ish diameter”
exists as a fuzzy probability distribution on a dimension, an observed instance of some
object and its diameter can indicate the strawberry-ness of that object in that dimension.

A berry botanist, as a trained observer of properties, will be able to use many more
dimensions to classify a strawberry than a layman, and can classify the strawberry into
varieties unseen by anyone else. A dessert chef might classify the same strawberry into
completely different categories such as taste, texture, and fragility. Nevertheless, all
possible strawberry varieties and variations should still be in the same vicinity of the
concept hyperspace.

e Attractors and connectionist networks are both low-level descriptions of
complex systems which can be used to describe, recognize, and manipulate
symbols

In this paper, we seek a method whereby the low-level structure and behavior of a
complex system may be abstracted to higher conceptual levels which can describe,
recognize, and manipulate symbols, thereby bridging the gap between mainstream AI and
connectionism. The major problem is the extreme complexity of these low-level systems.

The method proposed here uses an equally extreme simplification and abstraction of
low-level dynamic behavior using attractors and superdynamics, keeping only the essence
of the behavioral description. We must also radically simplify this representation to keep
it comprehensible as we can only visualize a two or three dimensional subspace at one
time. However, once the basic concepts are established, it is not difficult to imagine how
a number of these subspaces can work together as a concept discrimination mechanism.

Attractors describe the dynamics of complex, non-linear, real-world systems

e Attractors exist in a highly dimensioned state space of a complex system

Attractors are a mathematical construct which exist in a high dimensional (potentially
infinite-dimensional) continuous state space of infinite extent. This state space can
completely describe a physical system, such as a neural network, using a finite dimensional
subspace. The energy landscape metaphor allows us to visualize any two of these
dimensions at a time as a hyper-cross-section, along with how the energy of the entire
network changes as a function of only these two properties, while holding all other
properties (dimensions) constant.



¢ Neural networks are complex, non-linear dynamic systems with continuous
input

Consider the dynamics of some typical neural networks which have been implemented.
The backpropagation network is usually a non-recurrent network (except during training
cycles) in which network inputs propagate through a series of layers to the output nodes.
If we hold fixed inputs, all nodes in the network will reach a stable value in a single pass.
The network has thus settled immediately to a single, unmoving point in state space. No
temporal dynamics are involved, so the system is statically describable and therefore does
not have an attractor.

The more biologically plausible recurrent networks, on the other hand, are dynamical
systems. These networks settle into a stable state after multiple passes, displaying dynamic
behavior, and so these systems do have temporal attractors. Hopfield networks are an
example of a fully interconnected recurrent network. Hopfield describes global network
behavior using an energy landscape metaphor in a two dimensional state space. A fixed
point attractor corresponds to a sink in this scheme. The state of the system can be
described as a ball which rolls downhill along the landscape until the lowest point is
reached.

e Asuperdynamical scheme describes a particular progressive tilting or distortion
of the energy landscape

The energy landscape of a dynamic system such as a Hopfield network is fixed only as
long as the attractors are static. In superdynamical space, this system’s behavior is
described by a single point — the control parameters, or inputs, are held constant. If inputs
are changed, of the configuration of the network is altered (connection weights change)
the energy landscape is also changed, along with its attractors. The point in
superdynamical space then moves.

These changes to the network can be visualized as a tilting or distorting of the energy
landscape. The effect of escaping local minima (or basins of attraction) is similar to that of
simulated annealing in a Boltzmann machine. However, the mechanism of escape in a
Boltzmann machine is the stochastic repositioning of the state (making the “ball” jump
around) which diminishes over time, while varying control parameters cause the energy
landscape to actually change in a meaningful way.

e Boolean functions can be modeled by energy landscapes

As a simple example, a system to solve the binary exclusive-OR function can be
modeled using a three dimensional state space. The system should attain its minimum
energy (be most “relaxed”) when the correct answer is observed in conjunction with the
current inputs. The classical XOR network consists of two input nodes, one output node,
and a hidden node. We don’t really care what the hidden node inside the black box does,
so we examine the state space of the other three externally visible nodes. We represent
state space coordinates as (inputl, input2, output). Using only three dimensions for state
precludes using one of them to represent state energy, so we need to think of energy as a



non-dimensional property of a state, like density, or better yet gravitation, which can have
a gradient vector associated with it. Therefore, valid states of the network are at
coordinates (0,0,0), (0,1,1), (1,0,1), and (1,1,0). Note that, since XOR is a discrete
function — inputs and outputs are O or 1 — only the eight points at the corners of the unit
cube are potential locations for the attractors. Intermediate states encountered while
transitioning between stable states, however, might be real-valued. The energy landscape
is then one with “gravitational” attractors at the points corresponding to these states.
Clamping the inputs forces the network to eventually settle to one of these valid, stable
states. The state of the system is “repelled” away from invalid states. Although any other
Boolean function can be modeled similarly using the attractor paradigm, the XOR function
is one that is nonlinear and thus requires a hidden node.

The Boolean function above places many limits on the attractor representation which
are unnecessary. For example, there is no inherent reason to limit these functions to binary
values. Fuzzy logical functions are a natural extension of the attractor representation, since
the state space is continuous. Also, limiting the space to the unit cube is also an artifact of
using binary values. This limit conceptually puts infinitely high walls on the (two
dimensional) energy landscape, denoting illegal values. The attractor representation allows
a designer great freedom in creating a landscape.

The example chosen here is not meant to suggest that biological systems use Boolean
functions to implement computation, but rather to show the generality and illustrate the
application of the technique.

Connectionist systems are also dynamical systems

¢ The dynamical description is a higher level view of network behavior, but it is
nevertheless a complete description

Let us examine a higher level superdynamical description of network behavior. In
using attractors to describe system behavior, we trade off a description of the actual
behavior of the network as a single trajectory or sequence of states for a higher level
description of all possible sequences of states and where they will end up. When we add
attractor superdynamics as an even higher level description, we then get a description of
how the system will change with changes in control parameters.

In doing this, we abstract farther and farther away from the “freeze-frame” description
of a pattern of activations toward a description of the behavior of the system no matter
what the current state, and eventually to the superdynamical description which predicts
system behavior for every possible set of control parameters (external inputs). This is the
same distinction as between the actual state description of a trajectory of a ball within a
landscape, and the landscape itself which denotes all possible state trajectories. The
superdynamical description further describes how any landscape will change as a function
of control parameters.

This hierarchy of descriptions accounts for any external factors which can affect the
system. It is fully extensible and fully scalable. It is, however, an exceedingly complex



representation which can only be comprehended by extreme simplification. This is to be
expected from a highly complex system. The problem then becomes how to deal with this
representation — how to relate it to currently used, more traditional representations, and
how to physically implement it on a connectionist network.

Implementing attractor transitions in Hopfield-type nets: several methods have
been proposed

e Using noisy and/or asymmetrical connections: (Buhmann & Schulten, 1988)

Buhrman and Schulten have proposed an implementation of attractor transitions
which separates node connections into three types: (1) Symmetrical excitatory
connections between units active in a particular pattern builds the strength of that pattern,
(2) Inhibitory connections between active units in the pattern and all inactive units
prevent two patterns from merging into one attractor, and (3) Temporal order is
established by excitatory connections from units active in a pattern to units active in the
next pattern in the sequence, and by inhibitory connections to active units in the previous
pattern. The amount of global noise determines the stability of the attractors (i.e., the
strength of the tendency to transition to the next attractor in a sequence).

e Using connections with built-in time delays: (Kleinfeld & Sompolinsky, 1988) and
(Amit, Gutfreund, & Sompolinsky, 1985)

A technique using asymmetric connections with built-in time delays is proposed by
several physicists. In addition to the symmetrical connections in the Hopfield net,
effective instantaneously, asymmetrical connections which are not immediately effective
serve to generate the next attractor (t+1) in a sequence. This subsequent attractor (t+1)
then inhibits the units active in the current (t) pattern. The time delay allows the current
attractor (t) to remain active for a certain amount of time by delaying the generation of the
next attractor (t+1), thus delaying the inhibition of the current attractor (t). This model is
particularly popular.

e Using activations which can decay over time (Schreter, 1988)

Schreter proposes a simple technique which overlaps units active in an attractor with
the active units of the next attractor. While the current attractor is active, its active units
spontaneously decay, removing the inhibition of other attractors. The next attractor is the
one with the most active units which overlap the current attractor.

e Using connection asymmetries which can change over time (Peretto & Niez, 1986)

This technique also uses connections with both symmetrical and asymmetrical

components. The asymmetrical component has temporal dynamics which effect the

transitions to successive attractors. While the current attractor is active, the asymmetrical
components increase with time until the next attractor is forced active.

e Environmental changes external to subnets can influence attractors (Bell, 1989)
Bell summarizes the preceding techniques in his 1989 paper, then presents a new
technique in which attractor transitions arise from the influence of attractors in other nets.
Units get input from other units in the same attractor net, which sustains the current



attractor. In addition, external inputs may or may not sustain the current attractor. Bell
then suggests three basic ways an attractor may influence another attractor in a
neighboring net: (1) sharing units, (2) feedforward connections from local active units to
units in the neighboring net, and (3) feedforward connections from local active units to
connections in the neighboring net. A model is presented which can store a limit cycle
attractor or random transitions.

All these models provide valid mechanisms to transform from an attractor
representation to a low-level network representation (activations and connection
weights). These mechanisms suggest the potential of developing an automated technique
whereby, once an attractor representation of knowledge is formulated, it can then be
“imprinted” onto a physical network — in essence, a kind of atypical “learning” mechanism
which is not trained by example, but rather engineered by design.

Knowledge can be encoded as constraints on superdynamical scheme
“trajectories”

“Trajectory” as used here is not defined as a position change over time, but more
generally as a system behavior change (change of attractors) as a function of control
parameter changes. Since the control parameters we’re interested in typically change over
time, the difference is subtle and can be glossed over for our purposes. Time can, in fact,
be one of the control parameters of the system if attractors are allowed to decay into other
attractors. In general, each control parameter is a continuous variable which changes
gradually over time, and so scheme trajectories will also tend to be continuous.

“Taboo” areas exist in superdynamical space wherein attractors are not temporally
stable. Learning of new knowledge can be thought of as the creation of “well-worn paths”
in superdynamical space. Increasingly stringent “taboo-ing” of forbidden regions of
superdynamical space to scheme trajectories means that certain behaviors of the dynamical
system will eventually never be seen, and that certain combinations of control parameters
are never encountered. Conceptually, this means for a given set of control parameters
(corresponding to a point on some superdynamical scheme trajectory), the system
“expects” the set to change in a way similar to what it has experienced before (the system
expects to move along the same superdynamical trajectory as it has in the past). Well-worn
paths are those where the surrounding superdynamical energy landscape has become steep.
Scheme trajectories will quickly converge to that path.

Upon experiencing a brand new set of environmental inputs, the system will attempt
to behave as appropriate to the most similar well-worn trajectory; upon finding that this
behavior is inappropriate, a new branch trajectory is found to be appropriate and it too
starts to become well-worn. An “experienced” system will have a number of well-worn
trajectories, or behaviors, each appropriate to a particular set of environmental inputs.



Inheritance and categorization relations can be seen as varying scales within a
basin of attraction

e Aninheritance relation between two attractors signifies that one attractor basin is
within the other

A common feature of high-level knowledge representations is the inheritance hierarchy
in which specific concepts inherit properties from more generalized concepts. In the
attractor paradigm, an attractor basin representing a general concept may have smaller
basins within it which represent specific concepts. If enough constraints are applied, the
system’s state will settle in one of the small pits which are highly localized in state space.
If the constraints are insufficient to localize the state (resulting in a “fuzzy state”), the
system settles into the larger basin. The number and quality of constraints available
determine the effective “resolution” of the landscape. An instance of an object in this

model is a very local minimum, while a category of objects is a “less local” minimum.

To illustrate, consider the state subspace for a concept such as “car”. It will have a
certain fuzzy extent along the “length” dimension of 15-25 feet, along the “number of
wheels” dimension at four, and so on. If your particular car is a red Chevy, the state
subspace is constrained to exactly, say, 23 feet 4 inches in the length dimension and
further constrained along the color or red-ness dimension and the “make” dimension.
Finally, your car has a license number which constrains it to a unique spot along the
“license number” dimension.

This description of the state space provides rich structure at all scales. The model
implies that the energy landscape has a somewhat fractal character, in that the roughness
of the surface is similar at any scale. Fractal physical structures are common in nature.

Semantic networks can be encoded using a connectionist paradigm

e High-level (conceptual) and low-level (neural) descriptions are isomorphic in linear
systems (Smolensky, 1988)

Smolensky contrasts low level descriptions of linear systems with higher level
conceptual descriptions. These two levels roughly correspond to the mainstream AI vs.
connectionist viewpoints discussed previously. Smolensky distinguishes between
distributed representations where a concept is represented by a pattern of activation across
all nodes and local representations where an entire concept is represented by a single node
(the grandmother cell paradigm). He then shows that the two representations are actually
isomorphic in linear systems. The transformation between the two representations
corresponds geometrically to a change in coordinate systems. The dynamic evolution of
the model is identical no matter which viewpoint is assumed.

Linear systems are a subset of the systems describable using the attractor model. A
linear system has an energy landscape which is a hyperplane; the gradient of such a
landscape is the same everywhere. A linear system therefore does not have an attractor in
the same sense as a nonlinear system. The state of a linear system will, however, settle to
the “lowest” corner of a bounding hypercube.



Semantic network encoding of a classic problem in logic

e Dickis a Quaker and a Republican...is Dick a pacifist? (Shastri, 1988)

Shastri proposes a connectionist implementation of a semantic network using the local
representation. In this model, nodes correspond to concepts and properties, and
connections between nodes correspond to high-level rules or inferences. These rules or
connections may be fuzzy, since inference strength corresponds to connection weight.
Shastri uses meta-nodes for control of network behavior. For example, binder nodes are
used to characterize the inheritance/categorization relations of concept and property
nodes. Query nodes are clamped by the user to control what question is being asked of the
network.

Operating the network consists of clamping input nodes to input values, and clampling
the query nodes to indicate what question is being asked. For example, the input nodes
may be clamped to indicate “Dick is a Quaker” and “Dick is a Republican”. The query
node may be clamped to the question “Is Dick a pacifist?”. Encoded in the network
connections between concept and property units and binder units are the rules
determining probabilities of various inferences. In this example, Dick being a Quaker
tends to support the hypothesis that Dick is a pacifist, but Dick being a Republican
supports that Dick is not a pacifist. The strengths of the connections as implemented
determines the answer that will appear at the output nodes.

The dynamical behavior of the system corresponds to a system with a static,
unchanging energy landscape (once input and query nodes are clamped). The network
operates on a discrete clock. After a few time ticks, the network settles to an “answer”
state, which include the answer node activation representing the correct answer.

Attractors can be used to describe the operation of semantic networks

e Shastri semantic nets do not explicitly address network dynamics, nor does it use
a distributed representation

The semantic net connectionist implementation due to Shastri looks at static behavior
only. No explicit description of dynamic behavior with changing inputs is addressed. Also,
the local representation is not resistant to local damage, requires network topology to be
altered to add new concepts, and in general does not display certain properties attributed
to biological networks in nature. A distributed representation of concepts, on the other

hand, does display these desirable qualities.

e The system does, however, display temporal dynamics with a fixed point attractor
for each answer, represented by a final network state
The Shastri semantic net is, however, a dynamical system with a temporal fixed point
attractor. When inputs are altered (query or input nodes are changed), the energy
landscape changes, the attractor changes, and the system undergoes some dynamic
behavior as it settles to the new attractor, eventually again settling to a steady state.

Note that the final (answer) state depends on the initial pattern of activation in the
system. The attractors describing system behavior remain the same no matter what the



initial pattern, as long as the inputs are held steady and the network configuration (i.e.,
connection weights) remain the same.

e The symbolic representation of the Shastri network to solve a given problem does
not change much when described using attractors

‘We can use the attractor metaphor to describe the semantic network by reinterpreting

the graph symbols. Using a distributed representation of concepts, each node represents a

particular pattern across all nodes in the network, rather than denoting a one-to-one

correspondence. The connections between these nodes (we’ll call them semantic nodes as

opposed to the physical network nodes) then represent attractor transitions rather than a

single physical connection. The network becomes a graph representing discrete attractor

transitions and stable attractors. The actual physical implementation can use one of the
methods described above.

e A semantic node corresponds to the attractor which currently describes the
behavior of a subnet
‘When the network is in a state denoted by one of the semantic nodes, the attractor
corresponding to that node describes the dynamical behavior of the subnet — the system
will settle to the attractor no matter what pattern of activation was present previously. The
main distinction between this description and the local representation description is that
a single attractor represents the state trajectory to the answer state in the Shastri net, where
the distributed representation implies that the net may transition through several different
attractors (and several different dynamic behaviors) before settling into the answer state.
In other words, there is a trajectory through superdynamical space as well as through state
space.

e Connections between semantic nodes correspond to attractor transitions
An active attractor may transition to the next attractor which may exist entirely in the
same subnet, entirely in another subnet, or partially in two overlapping subnets. The
semantic connection weight then represents the tendency of a given attractor to change to
another. In the attractor model, these semantic weights may themselves exhibit dynamic
behavior and asymmetry (as well as network weights).

e What if the network configuration (i.e., connection weight set) changes?

In the attractor model, the network changes configuration as part of normal behavior.
‘When the set of connection weights changes, the energy landscape of the system changes
as well as the attractors describing that system. If the initial state of the system (defined
by the clamped nodes) remains the same, the final output may change if the initial state
lies in a different basin of attraction due to the landscape change. The final attractor in an
attractor transition sequence should be temporally stable so that the answer state is also
stable.

e Examining the state of the system is difficult
One can at best examine the static pattern of network node activations (a freeze frame)
in a subnet and see how similar it is to a known or expected pattern. In the real world,
input is continuous and dynamically changing, and may originate from the external



environment or from other regions of the net (other subnets). In this way, any portion of
a large network may be extracted for examination, while the remainder of the network is
treated as a black box which provides the environment for the subnet being examined.
This is a kind of inverted black box view, since everything outside of the subnet being
observed is defined only by its interface with the subnet. A subnet is excised from the
complete system, its inputs and outputs are defined and controlled or monitored, and the
subnet behavior and patterns of activation are examined. The danger of using this method
is that the complete distributed representation of a concept may not be included in the
subnet.

e Theinternal behavior of the superdynamical scheme is difficult to interpret directly

The high level superdynamical view is even harder to visualize than the distributed

representation of concepts. The energy landscape metaphor may prove useful here, even

though it is simplified to only two dimensions at a time. Animated modeling of two-

dimensional state and superdynamical subspaces may be helpful for visualization of
behavior and its changes over time.

e How might a system based on the attractor paradigm be generated?

‘We provide here some highly speculative ideas on engineering working systems based
on the attractor model. Since the landscape metaphor is useful and intuitive, this provides
a good starting point. An editor capable of generating landscapes and their associated
attractors in state and superdynamical subspaces would be required.

First, one would define a superdynamical landscape, which relates environmental
inputs to the desired behavior of the system given those inputs. The relevant dimensions
of this space must be labelled (i.e., determine the relevant environmental inputs). One
might define “key frames” of superdynamical scheme trajectories as is done when
animating cartoons, to be interpolated by computer. Next, the state space energy
landscapes describing the behavior of the system at particular points in superdynamical
space would be defined. Much of this task consists of labeling the subspace dimensions
with properties. Of course, only a few dimensions are important at any particular
superdynamical point. The dependencies between dimensions also need to be defined.
One would build a variety of these subspaces to describe the state behavior of the system,
to be combined later.

Once the landscapes are complete, they can be combined in the computer into the n-
dimensional hyperspace. This landscape can then be imprinted onto a fully interconnected
recurrent neural network, possibly using a mechanism such as the ones described above.
Some connections may be found unnecessary depending on the nature of the task, so they
can be eliminated entirely. With this method, connections are not explicitly specified.
Rather, they become an internal, distributed mechanism for the network to effect
transitions from one state (attractor) to the next based on time or external inputs.

The process of imprinting the energy landscapes onto a physical network needs to be
investigated. A particular set of network interconnection weights maps to a single energy
landscape, but the inverse mapping may not be unique. There are at least two possible



methods: An analytical transform function may be derived which can generate a set of
weights, or the weights may be generated using a learning or imprinting technique over
multiple iterations.

Once the connection weights are determined, they could be “burned” into a silicon
neural network chip, like burning a PROM. The resulting chip should behave as designed,
with far greater speed than a biological neural network, and with the ability to interface
directly with conventional computer hardware.

Speculations on problems which may be more tractable using attractor-based
descriptions than by semantic networks

This section discusses several problems which traditional artificial computational
systems have had difficulty solving. Attractors may help provide elegant solutions; we
venture guesses here on how certain properties of attractors might help in solving some of
these problems and in designing truly general-purpose computers.

¢ Handling the novel, unexpected input which can occur in open systems

In a Shastri network, unexpected input requires creating and adding new conceptual
nodes and meta-nodes and encoding new categorization/inheritance relations. This can be
a complex ad hoc task even when automated. However, in an open system, new concepts
should be add-able at any time without major restructuring of the network. Since attractors
do not have to be explicitly described to exist, new attractors may be formed and
incorporated by the system spontaneously simply by modifying a particular locale in the
energy landscape, while leaving the rest intact.

The attractor network can accept input from another subnet or from the external
environment in exactly the same manner. No distinction is made as to the source of input.
Excitation of a pattern in a subnet can arise from external stimuli or from excitation in a
nearby or overlapping subnet. There are no explicit bounds to the attractor description
(subnets may be any size), making it suitable for a hierarchical, scalable open system
description. Networks can be expanded to include any size organization while still using
a similar description. Sociological studies have indicated that many tasks in large
organizations are repetitive in nature — perhaps even these high-level behaviors may be
describable using periodic attractors.

¢ Periodic behavior modified by changes in external input

e Walking or running is a behavior in nature which may be describable by attractors

The attractor method generalized to periodic attractors suggests several potential
applications. Walking or running can be implemented by a cyclic activation of sets of
motor neurons (Arbib, 1985). Different gaits are slight modifications of the generalized
periodic walk/run behavior. One can imagine a walk/run attractor modulated by a “desired
speed” control parameter. Once the control parameter is set, system behavior settles to the
walk/run attractor causing that cycle to repeat until the control parameter changes. At a
certain speed, the periodic walk attractor transitions to a slightly different run attractor.



e Musicis a perceptual behavior which seems to create some kind of precisely timed
repetitive cycle
Music is another set of behaviors which suggest the presence of a periodic “rhythm
attractor”. This attractor might be generated through synchronous reinforcement with
auditory sensors. A trained musician would be able to further translate this sensory
attractor into a motor attractor and thereby generate precisely timed, metronome-like
movements of the fingers.

If this viewpoint is examined closely, some interesting aspects are noted. The music
attractor needs to display minimal jitter (i.e., it must begin its cycles at precise times; the
interval does not vary between cycles), which would demonstrate the ability of the brain
to maintain precise timing. The modulation of the repetitive patterns of both time (to form
rhythm) and pitch (to form scales and harmony) in a myriad of different ways is the basis
of music.

There seems to be something very fundamental about music and its connection to
natural computation in the human brain. Both are intellectual activities which seem simple
to those who engage in them, but both become very complex upon analysis. Perhaps the
well known structure of music can provide clues to the little known hidden structure of
information processing in the brain.

e Periodic attractors are a natural description of repetitive behaviors
There are many types of cyclic behavior seen in life, from the simplest form of motor
movement in simple creatures to the repetitive daily cycles of large social organizations.
The actual periodic behavior seems to become automatic after learning; this repetitive,
“mindless” behavior can then be modulated to fit the particular circumstances of the
environment.

e Chaotic attractors could describe certain random aspects of natural computation
‘What role might chaotic attractors play in computation? Perhaps the brain is extremely
capable of modulating attractors (i.e., moving about in superdynamical space), including
transitioning deliberately from fixed point to periodic to chaotic attractors. When a
particular problem solving approach does not work, could it be that chaos is introduced to
provide innovative alternatives? Those questions and many more which the attractor
model brings up cannot be answered without a great deal more research.

Conclusion

The attractor model of natural computation seems well suited for describing highly
complex dynamical systems such as neural networks. This field has been researched very
little to date. It is highly interdisciplinary, taking bits and pieces from computer science,
mathematics, physics, biology, psychology, and sociology. The model presented here is far
from complete. For example, little attention has been given to the method of transforming
between the various representations presented. However, the new perspective provided
by this model and the description of potential interpretations are a first step in that
direction. There are innumerable opportunities for further research along these lines.
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